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Holographic flow of Anomalous Transport Coefficients

Introduction

AdS/CFT and transport coefficients

QFT in the hydrodynamic regime

Global equilibrium
Ideal fluid

Tµν = (P + ε)uµuν + Pgµν (1)

Dual theory: Black Hole

Grand canonical ensemble: Global symmetries of the CFT

Jµ = nuµ (2)

Dual theory: Gauge fields propagating in the bulk

µ ∼ A0(B)−A0(H) (3)

(T,QI) of the CFT → (TH , QI) of the B-H
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Introduction

AdS/CFT and transport coefficients

Perturbing the peace

Perturbations with small amplitude.

Linear response theory: Kubo formulas → transport
coefficients.

Perturbations with small energy (late-time)

First order Hydro

Tµν = T (0)
µν + Πµν (4)

Jµ = nuµ + νµ (5)

Fluid/gravity correspondence → transport coefficients.

Perturbations with small energy and amplitude

First order Hydro + Kubo formulas applicable!
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Introduction

AdS/CFT and transport coefficients

Perturbing the peace II ([Hubeny, Rangamani ’10])
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Introduction

Anomalous transport

Anomalies: Generalities

Axial anomaly [Bell, Jackiw ’69]

Dµj
µ
5 ∝ ε

µνρσFµνFρσ (6)

Mixed anomaly [Delbourgo, Salam ’72]

Dµj
µ
5 ∝ ε

µνρσRαβµνR
β
αρσ (7)

Both can be implemented by including Chern-Simons terms in the bulk
action, i.e. [Son, Surówka ’09]

∆S ∼
∫
d5x
√
−g
(

4κ

3
εLABCDALFABFCD

)
(8)
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Introduction

Anomalous transport

Anomalous transport I

Chiral Magnetic Effect: Appearance of a current in the direction of ~B
[Kharzeev, Warringa ’09]

δJµ = σBε
µνρσuνFρσ (9)

δTµν = σεB(uµBν + (µ→ ν)) (10)

σB = lim
kc→0

i

2kc

∑
a,b

εabc
〈
JaJb

〉
(ω = 0, ~p) (11)

σεB = lim
kc→0

i

2kc

∑
a,b

εabc
〈
T 0aJb

〉
(ω = 0, ~p) (12)

where a, b, c = x, y, z.
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Introduction

Anomalous transport

Anomalous transport II

Chiral Vortical Effect: Appearance of a current due to vortices in the
fluid ωm [Bhattacharyya, Hubeny, Minwalla, Rangamani ’07].

δJµ = σV ε
µνρσuν∂ρuσ (13)

δTµν = σεV (uµων + (µ→ ν)) (14)

σV = lim
kc→0

i

2kc

∑
a,b

εabc
〈
JaT 0b

〉
(ω = 0, A0 = 0) (15)

σεV = lim
kc→0

i

2kc

∑
a,b

εabc
〈
T 0aT 0b

〉
(ω = 0, ~p) (16)

where a, b, c = x, y, z.
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Flow of the transport coefficients

Setup

Cutoff flow [Iqbal, Liu ’08] [Faulkner, Liu, Rangamani ’11]

H Λ∗

Λ∗ + dΛ∗

φ(0) (x)
φ(0) (x)

a(x, r)

r→∞

b(x, r)

Two theories, one equipped
with a cutoff Λ∗ and the other with Λ∗ + dΛ∗

Holographic
dictionary: Sourced one-point function

< O >SΛ∗∼
δSon−shellB,ren.

δφ
(r = Λ∗) (17)

Green’s
function GR: up to first order in the source

< O >SΛ∗= lim
r→Λ∗

GR(r)φ(r) (18)
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Flow of the transport coefficients

Setup

Computation...

For the theory living at Λ∗ + dΛ∗:

GR(Λ∗ + dΛ∗) ≈ GR(Λ∗) +
1

φ(Λ∗)
dΛ∗

d

dΛ∗

(
< O >SΛ∗

)
(19)

dGR(Λ∗)

dΛ∗
=

1

φ(Λ∗)

d

dΛ∗

(
< O >Sr=Λ∗

)
(20)

It turns out that d
dΛ∗

(
< O >SΛ∗

)
can be related to the equations of motion

of < O >S (r) and φ(r) for the theory defined at Λ∗ by formally identifying
r with Λ∗!

We can describe the cutoff flow as dynamics in the bulk
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Flow of the transport coefficients

Setup

Conclusions

We can define two different theories equipped with a cutoff.

We have explicitly constructed the flow of GR(Λ∗) as we
vary the position of the cutoff.

The resulting equations can be reexpressed as the equations

of motion for the bulk quantity <O>(r)
φ(r) as a function of the

variable r.
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Flow of the transport coefficients

Chiral Magnetic Conductivity

The model
The action writes [Son, Surówka ’09]

∆S =
1

16πG

∫
r<Λ∗

√
−g
(
−1

4
FMNF

MN +
κ

3
εMNPQRAMFNPFQR

)
Backgrund metric (RN-AdS BB) and Aµ fields

ds2 =
r2

L2

(
−f(r)dt2 + dx̄2)+

L2

r2f(r)
dr2 (21)

f(r) = 1− ML2

r4
+
Q2L2

r6
; A =

(
β − µr2

H

r2

)
dt (22)

Consistent definition of the current

Jµ =
δS

δAµ(r = Λ∗)
= lim
r→Λ∗

√
−g

16πG

(
Fµr +

4κ

3
εrµνρλAνFρλ

)
(23)

The model reproduces the correct expression for the axial anomaly of the
boundary theory ([Amado, Landsteiner, Pena-Benitez ’11])

DµJ
µ = lim

r→Λ∗

−
√
−gκ

48πG
εrµνρλFµνFρλ (24)
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Flow of the transport coefficients

Chiral Magnetic Conductivity

Consistent vs. Covariant

Consistent definition of the current
Response of the system to a perturbation, i.e.

< jµ >∼ lim
r→Λ∗

δS

δAµ
(25)

Covariant definition of the current
Redefinition of the current so as to avoid the appearance of
non-covariant parts (by adding the BZ polynomial to the
consistent current). Holographically: it amounts to taking the
subleading term in the asymptotic value of Aµ as definition of the
current [Son, Surówka ’09].

Jµ = lim
r→Λ∗

√
−g

16πG
Fµr (26)

Surface (such as Chern-Simons) terms flow trivially: We will stick
to the covariant definition.
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Flow of the transport coefficients

Chiral Magnetic Conductivity

Applying the method to a transport coefficient

Variation of the current due to a normalized external perturbation
a(x, r) = a(0)(x) a(r)

a(Λ∗)
:

δJµ = lim
r→Λ∗

√
−g

16πG
δFµr (27)

The external source reads E(Λ∗) = −iωa(0)(x) = E(Λ∗ + dΛ∗). It has the
same value for both theories.
Holographic dictionary: The electric conductivity σE(Λ∗) is

σE(Λ∗) = lim
r→Λ∗

−1

16πGω

√
−ggxxgrr da(r)/dr

a(Λ∗)
(28)

Expanding σE(Λ∗ + dΛ∗) to first order in Λ∗ one gets

dσ(Λ∗)

dΛ∗
=

1

Ex
d

dΛ∗
δJx(r = Λ∗) (29)

Idea: Use bulk equations to describe the cutoff flow!
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Flow of the transport coefficients

Chiral Magnetic Conductivity

Computation of the flow for the Electric and Chiral Magnetic
Conductivities

Perturbations that we switch on: ax(x, r); az(x, r). In momentum space
a(x,z)(k, r) = a(r)e−iωt+iky We use two equations for the current (the
covariant formula and the constitutive one)

δJx =

√
−g

16πG
δFµr (30)

δJx = σEE
x + σBB

x ≡ σEδF0x + σBε(xjk)
δFjk

2
(31)

Equations of motion on Σr

1√
−g

[
−16πG∂rj

x + ∂y(
√
−gδF yx) + ∂t(

√
−gδF tx)

]
= −8κεrtxyzFrtδFyz (32)

∂rj
x +

√
−g

16πG

(
ikgyygxxBz + iωgxxgttEx

)
= − κ

2πG
FrtB

x (33)

Bianchi identities: Bz = k
ω
Ex
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Flow of the transport coefficients

Chiral Magnetic Conductivity

Computation of the flow for the Electric and Chiral Magnetic
Conductivities II

Taking the derivative of (31) explicitly

∂rδJ
x = ∂rσEE

x + σE∂rE
x + ∂rσBB

x + σB∂rB
x (34)

∂rB
x = ikδFrz =

−ik16πG√
−g

grrgzzδJ
z =
−ik16πG√
−g

grrgzz [σEE
z + σBB

z] (35)

Using the Bianchi identities again...

∂rB
x =
−ik16πG√
−g

grrgzz

[
σE
−ω
k
Bx + σB

k

ω
Ex
]

(36)

Finally, one gets

∂rj
x = Ex

[
∂rσE +

iω16πG√
−g

grrgxx

(
σ2
E −

k2

ω2
σ2
B

)]
+

+Bx
[
∂rσB +

iω32πG√
−g

grrgxxσBσE

]
(37)
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Flow of the transport coefficients

Chiral Magnetic Conductivity

Computation of the flow for the Electric and Chiral Magnetic
Conductivities III

Equating (33) and (37) we arrive at

∂rj
x = Ex

[
∂rσE +

iω16πG√
−g

grrgxx

(
σ2
E −

k2

ω2
σ2
B

)]
+

+Bx
[
∂rσB +

iω32πG√
−g

grrgxxσBσE

]
=

= −
√
−g

16πG

(
i
k2

ω
gyygxxEx + iωgxxgttEx

)
− κ

2πG
FrtB

x (38)

And, finally

∂rσE = −iω
[

16πG√
−g

grrgxx

(
σ2
E −

k2

ω2
σ2
B

)
+

√
−g

16πG
gxx

(
gtt +

k2

ω2
gyy
)]

(39)

∂rσB = −iω 32πG√
−g

grrgxxσBσE −
κ

2πG
Frt (40)
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Flow of the transport coefficients

Chiral Magnetic Conductivity

Computation of the flow for the Electric and Chiral Magnetic
Conductivities IV

Regularity at the horizon r = rH imposes:

∂rAi =

√
grr
−gtt

∂tAi (41)

This fact can be seen to be a consequence of infalling boundary conditions
(membrane pàradigm). In our gauge choice Ar = 0, the above relation
implies

Fri =

√
grr
−gtt

Fti (42)

The horizon is compatible only with an electric conductivity σE.
In particular, σB(r = rH) = 0

In the limit ω, k → 0, (39) and (40) reduce to

∂rσE = 0 (43)

∂rσB = − κ

2πG
Frt =

µr2
H

2π2r3
(44)
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Flow of the transport coefficients

Chiral Magnetic Conductivity

Computation of the flow for the Electric and Chiral Magnetic
Conductivities V

Solutions to the first order equations

σE = Constant (45)

σB(r) =
µ

4π2

(
1−

r2
H

r2

)
(46)

Equation (45) has appeared before in [Iqbal, Liu ’08],
implying the universality of σE .

σB reduces to µ
4π2 in the limit r →∞, as expected from

[Amado, Landsteiner, Pena-Benitez ’11]. Notice that we are
able to take naively the limit r →∞ for SctermA ∼

∫
d4xF 2

is of order k2.
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Flow of the transport coefficients

Chiral Vortical Conductivity

Result and emergence of µ(Λ)

The energy-momentum tensor reads

tab = lim
r→Λ∗

√
−γ

8πG
(δabK −Ka

b ) (47)

(γ is the determinant of the induced metric and Ka
b is the extrinsic

curvature).
Repeating the process...

σV (r) =
µ2

8π2

(
1− 2r2

H

r2
+
r4
H

r4

)
(48)

Emerging chemical potential

µ(r) = µ

(
1− r2

H

r2

)
(49)

Preliminary calculation of σεV , σεB points towards this effective
µ(r) as well
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Flow of the transport coefficients

Chiral Vortical Conductivity II

Non-renormalization theorem

Non-Renormalization Theorem: The weak coupling limit captures the full
dynamics of the anomalies. Therefore, anomalous transport coefficients
computed at weak and strong coupling coincide.

Weak Coupling Strong Coupling

σB
µ

4π2
1 µ

4π2
2

σV
µ2

8π2
3 µ2

8π2
4

σεB
µ2

8π2
5 µ2

8π2

σεV
µ3

12π2
6 µ3

12π2

1[Kharzeev, Warringa ’09]; [Newman ’07]
2[Son, Surówka ’09]
3[Landsteiner, Meǵıas, Pena-Benitez ’11]
4[Erdmenger, Haak, Kaminski,Yarom ’09]; [Banerjee, Bhattacharya, Bhattacharya,

Dutta, Loganayagam]
5”Strongly interacting matter in a magnetic field”. Springer
6”Strongly interacting matter in a magnetic field”. Springer
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Flow of the transport coefficients

Chiral Vortical Conductivity II

Explicit function Λ(r)

Weak coupling: QFT approach [Kharzeev, Warringa ’09]

σB(Λ) =

∫ Λ

0

dq (n(Eq − µ)− n(Eq + µ)) = F(Λ)−F(0)

Strong coupling: AdS/CFT → σB(r) = µ2

4π2

(
1− r2H

r2

)
Non-renormalization

theorem → Λ(r) = F−1 (σB(r) + F(0))

Explicit map between Λ and r

σB

Λ

WEAK

σB

r

STRONG
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Physical interpretation, conclusions and perspectives

Interpretation of the results

Interpretation

Effective µ(Λ)
The chemical potential represents the necesary energy to introduce a
unit of charge into the system. It depends on the cutoff scale: The unit
of charge must have a wavelenght of, at most, ∆λ ∼ 1

Λ
. Therefore, it

demands less energy to enter the system and spread into it
(thermalize).

σ̇E = 0
The electric conductivity is purely dominated by IR contributions.
This fact hints at the reason why it is so difficult to compute these
conductivities in non-abelian gauge theories such as QCD. One could
expect that σE = constant is an Nc →∞ effect, and that 1

Nc

contributions would make σ̇E(r) become a varying function that
approaches 0 as r − rH increases.
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Physical interpretation, conclusions and perspectives

Conclusions

Conclusions and perspectives

We have studied the cutoff flow of different transport coefficients,
showing that, surprisingly, the anomalous ones depend explicitly on the
cutoff. With this fact in mind, we have analyzed the possibility of
finding an explicit map Λ(r), providing that the Non-renormalization
theorem applies.

The flow can be interpreted as an effective flow of the chemical
potential. Preliminary calculations of the remaining conductivities
support this point.

Remaining issues
Compute the flow for σBε , σ

V
ε .

Include the gravitational anomaly into the computation. [Landsteiner,
Meǵıas, Melgar, Pena-Benitez ’11]

Generalize the background metric.

Compute the proper Wilsonian RG flow and study the behaviour of the
transport coefficients. [Faulkner, Liu, Rangamani ’11]
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